

Geometric singularities

选延 University of
 图 BRISTOL

Cusp universality

surface of a viscous
 fluid

width : $\mathrm{r}^{3 / 2}$
caustics in a
cup

国道 University of

Hele-Shaw cell

Polubarinova-Kochina, 1945
bubble with sink in center

Galin, 1945
突 (1) BRISTOL

Cusp structure: viscous flow

similarity solution: $\quad \psi=r^{\alpha} f(\phi)$

$$
\alpha=1,3 / 2,2, \ldots \quad \text { 四棌 Univeristy of }
$$

Local analysis

$$
\begin{gathered}
u_{x}=-6 A y^{1 / 2}, u_{y}=-V \\
\frac{\partial h}{\partial y}=\frac{u_{x}}{u_{y}}=\frac{6 A}{V} y^{1 / 2} \\
h: y^{3 / 2}
\end{gathered}
$$

$$
\psi=V x-4
$$

Jeong and Moffatt solution

J.-T. Jeong, H.K. Moffatt, JFM `92

fluid
viscosity η वेढ

$$
R=C e^{-2 \pi C a}
$$

$z(\theta)$ smooth
singularity: $z^{\prime}(0)=0$

Cusp geometry

critical point: $a_{1}=0$

$$
\begin{array}{lll}
x=a_{1} \varphi & x=\epsilon X, & y=\epsilon^{3 / 2} Y \\
y=0 & X=\frac{\sigma^{2}}{2}, & Y=\frac{\sigma^{3}}{3} \pm \sigma
\end{array}
$$

universal $x=\varepsilon \varphi+a \varphi^{3} / 3$ unfolding: $y=\varphi^{2} / 2$

Singularity theory

left-right equivalent: $g=\psi \circ f \circ \phi^{-1}$ singular germ: $\operatorname{rk}_{0}(f)<\min (n, p)$ unfolding: $\quad F(\mathbf{x}, \mathbf{u}), \quad F(\mathbf{x}, \mathbf{u}=0)=f(\mathbf{x})$
plane curves: $\left(\varphi^{m}, \varphi^{n}\right), \quad \operatorname{hcf}(\mathrm{m}, \mathrm{n})=1$
Example: $(\underbrace{\varphi^{2}, \varphi^{5}}_{\text {germ }}+\underbrace{\mu_{1} \varphi+\mu_{3}}_{\text {unufolding }} \varphi^{3})$
Eggers, Suramlishvili, Eur. J. Mech. B, 201 Bise Univisity of

A small bubble

Elastic cusp

（a）

（b）

$$
x=\kappa^{3}\left(s+a s^{3}\right) \quad y=\kappa^{2} s^{2}
$$

with S．Karpitschka， J．Snoeijer

比 Univesity of日四 BRISTOL

A shock wave

finite time t_{0} !
W.C. Griffith, W. Bleakney

Burgers' equation

characteristic curves:

$$
x(\xi, t)=u_{0}(\xi) t+\xi
$$

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0
$$

$$
u(x(\xi, t), t)=u_{0}(\xi)
$$

$$
t_{0}=\operatorname{Min}_{\xi}\left\{-1 / u_{0}^{\prime}(\xi)\right\}
$$

$$
u_{0}(\xi)=-s^{1}+a s^{\prime 3}+\ldots
$$

Similarity solution $\quad t^{\prime}=t_{0}-t$

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 \quad u=t^{\prime \alpha} U\left(\frac{x}{t^{\prime \alpha+1}}\right) \xi=x / t^{\prime \alpha+1} \\
-\alpha U+(1+\alpha) \xi U^{\prime}+U U^{\prime}=0 । \\
\xi= \begin{cases}-U-C U^{1+1 / \alpha}, \alpha_{\mathrm{i}}=\frac{1}{2 i+2}, i=0,1,2, \ldots & \begin{array}{c}
\text { regular at } \\
-U=0
\end{array}\end{cases}
\end{gathered}
$$

Similarity solution

$$
t^{\prime}=t_{0}-t
$$

$$
\begin{aligned}
& \xi+U_{b}+C U_{b}^{3}=0 \\
& \xi-U_{a}+C U_{a}^{3}=0
\end{aligned}
$$

$$
u(x, t)=t^{\prime 1 / 2} U\left(x / t^{13 / 2}\right)
$$

only stable solution!

2D structure of shock waves

Compressible Euler ${ }_{\text {with T. Grava }}$

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \quad p=\frac{A}{\gamma} \rho^{\gamma} \\
& \frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla p \quad \mathbf{v}=\nabla \phi \\
& \frac{\partial \phi}{\partial t}+\frac{1}{2}|\nabla \phi|^{2}=-\frac{A}{\gamma-1}\left(\rho^{\gamma-1}-\rho_{0}^{\gamma-1}\right) \\
& |\nabla \rho|_{\rho=\rho_{0}} \rightarrow \infty \\
& c_{0}^{2}=\frac{\partial p}{\partial \rho}=A \rho_{0}^{\gamma-1} \quad \begin{array}{ll}
\partial^{2} x / \partial \rho^{2}=0, & \frac{\partial^{3} x}{\partial \rho^{3}}=\text { finite! }
\end{array} \\
& \begin{array}{ll}
\text { 四齿Univerityof } \\
\text { BRISTOL }
\end{array}
\end{aligned}
$$

Similarity solution

$$
\begin{aligned}
\phi & =\left|t^{\prime}\right|^{2} \Phi(\xi, \eta), \quad \xi=\frac{x+c_{0} t^{\prime}}{\mid t^{\prime} 3^{3 / 2}}, \quad \eta=\frac{y}{\left|t^{\prime}\right|^{1 / 2}} \\
\rho & =\rho_{0}\left[1+\left|t^{\prime}\right|^{1 / 2} R(\xi, \eta)+\left|t^{\prime}\right| Q(\xi, \eta)\right] \\
& \left.-c_{0}\left|t^{\prime}\right|^{\prime / 2} \Phi_{\xi}+\left|t^{\prime}\right| \left\lvert\, \mp 2 \Phi \pm \frac{3 \xi}{2} \Phi_{\xi} \pm \frac{\eta}{2} \Phi_{\eta}\right.\right]+\frac{\left|t^{\prime}\right|}{2} \Phi_{\xi}^{2}=
\end{aligned}
$$

$\operatorname{In}\left(\mathbf{B}-\frac{c_{0}^{2}}{\gamma-1}\left\{(\gamma-1)\left|t^{\prime}\right|^{1 / 2} R+\left|t^{\prime}\right|\left[(\gamma-1) Q+\frac{1}{2}\left(\gamma^{2}-3 \gamma+2\right) R^{2}\right]\right\}+O\left(t^{\prime 3 / 2}\right)\right.$
):
In(C

$$
-c_{0} R_{\xi}\left|t^{\prime}\right|^{-1}+\left|t^{\prime}\right|^{-1 / 2}\left[\mp \frac{R}{2} \pm \frac{3 \xi}{2} R_{\xi} \pm \frac{\eta}{2} R_{\eta}-c_{0} Q_{\xi}\right]+
$$

):

$$
\rho_{0}\left|t^{\prime}\right|^{-1} \Phi_{\xi \xi}+\left|t^{\prime}\right|^{-1 / 2}\left[\Phi_{\xi} R_{\xi}+\Phi_{\xi \xi} R\right]=O\left(t^{\prime 0}\right)
$$

$U-3 \xi U_{\xi}-\eta U_{\eta}= \pm(\gamma+1) U U_{\xi}$

Similarity solution

$$
\begin{aligned}
\xi(U, \eta) & : \xi_{U} U-3 \xi+\eta \xi_{\eta}= \pm(\gamma+1) U \\
\xi & =\mp \frac{\gamma+1}{2} U-U^{3} F\left(\frac{\eta}{U}\right)
\end{aligned}
$$

regularity condition: $\left.\frac{\partial^{3} \xi}{\partial \eta^{3}}\right|_{0}=-F^{\prime \prime \prime}(a) \stackrel{!}{=}$ const

$$
\xi=\frac{\gamma+1}{2} U-A_{0} U^{3}-A_{1} U^{2} \eta-A_{2} U \eta^{2}-A_{3} \eta^{3}
$$

Shock position

$$
\begin{aligned}
& \xi=\frac{\gamma+1}{2} U-A_{0} U^{3}-A_{1} U^{2} \eta-A_{2} U \eta^{2}-A_{3} \eta^{3} \\
& U(\xi, \eta) \text { vertical: } \frac{\gamma+1}{2}=3 A_{0} U^{2}+2 A_{1} U \eta+A_{2} \eta^{2} \\
& \bar{\xi}=\xi-\xi_{s}(\eta), \quad \bar{U}=U-U_{s}(\eta) \\
& \bar{\xi}=-A_{0} \bar{U}\left(\bar{U}^{2}-\Delta^{2}(\eta)\right)
\end{aligned}
$$

Numerical simulation

M.A. Herrada, G. Pitton
with Basilisk

Parameters

before singularity

$$
\xi=\frac{\gamma+1}{2} U-A_{0} U^{3}-A_{1} U^{2} \eta-A_{2} U \eta^{2}-A_{3} \eta^{3}
$$

Predictions

after singularity

Counterexample: drop coalescence

Aarts et al., PRL `05
width : r^{2}

整 University of [20 BRISTOL

