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Many key phenomena in physics and engineering are described as 
singularities in the solutions to the differential equations describing 
them. Examples covered thoroughly in this book include the formation 
of drops and bubbles, the propagation of a crack, and the formation  
of a shock in a gas.

Aimed at a broad audience, this book provides the mathematical 
tools for understanding singularities and explains the many common 
features in their mathematical structure. Part I introduces the main 
concepts and techniques, using the most elementary mathematics 
possible so that it can be followed by readers with only a general 
background in differential equations. Parts II and III require more 
specialized methods of partial differential equations, complex analysis, 
and asymptotic techniques. The book may be used for advanced  
fluid mechanics courses and as a complement to a general course  
on applied partial differential equations. 
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Cusp universality

3/2width r:
cusp

surface of a viscous 
fluid

caustics in a 
cup



Hele-Shaw cell  

bubble with
sink in center

Polubarinova-Kochina, 1945

Galin, 1945



Cusp structure: viscous flow

coarse grain

42 = 0

 = r↵f(�)similarity solution:

↵ = 1, 3/2, 2, . . .
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Local analysis
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J.-T. Jeong, H.K. Moffatt, JFM `92

Jeong and Moffatt solution

holomorphic
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Cusp geometry
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Singularity theory

g =  � f � ��1left-right equivalent:

F (x,u), F (x,u = 0) = f(x)unfolding:
rk0(f) < min(n, p)singular germ:

germ unufolding

Eggers, Suramlishvili, Eur. J. Mech. B, 2017

plane curves: ('m,'n), hcf(m, n) = 1

Example:('2,'5 + µ1'+ µ3'
3)



A small bubble
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Elastic cusp with S. Karpitschka,
J. Snoeijer
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A shock wave

a jump in density occurs at some 
finite time t0 !

W.C. Griffith, W. Bleakney



Burgers’ equation

0u uu
t x
¶ ¶

+ =
¶ ¶

t,u

x

  u(x(ξ ,t),t) = u0(ξ )

characteristic curves:

  x(ξ ,t) = u0(ξ )t + ξ

singularity in finite time

  
t0 = Minξ −1 u0

′(ξ ){ }
 u0 (ξ ) = −s '+ as '3+…



Similarity solution
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Similarity solution
0t t t¢ = -

x x

ub ua

only stable solution!

( )1/2 3/2( , ) /u x t t U x t¢ ¢=
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a = 0

⇠ + Ub + CU3
b = 0
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2D structure of shock waves
courtesy of 
Patrice Legal

   tc( y)− t0 = ay2 +O( y3),  a > 0,  y ∼ t '1/2



Compressible Euler with T. Grava
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Similarity solution
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Similarity solution
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Shock position
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Numerical simulation

with Basilisk
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Level 12
Level 15
Level 18

S=0.7(t−0.511)3/2

Level 12
Level 15
Level 18
high order code
1/|¢ l|

max
 =3.85*(t−0.511)

(a)

(b)

M.A. Herrada,
G. Pitton



Parameters

before singularity 

A0 A2
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Predictions

ξ = (x '− c t ' ) t ' 3/2

after singularity 

U = u t ' 1/2

η = y ' t ' 1/2



Counterexample: drop coalescence  

2width r:

Aarts et al., PRL `05


